If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-50x+24=0
a = 24; b = -50; c = +24;
Δ = b2-4ac
Δ = -502-4·24·24
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-14}{2*24}=\frac{36}{48} =3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+14}{2*24}=\frac{64}{48} =1+1/3 $
| x=14/4= | | j+3j-2j-2j+j=13 | | b+95=95 | | 8+6+3x=25 | | 5a+a-1=11 | | 20j-13j-5j=6 | | −1/3 =4j −10/3 | | 9h+25=65.50 | | 4p−3p=20 | | x/25+4/5=-1/5 | | 47=3u-14 | | -9x-3=6x+57 | | 20m-2m+3m=19 | | c^2=13 | | (10.235)(0.277)=(x)(8.315)(293.15) | | 7+3x+5-4+3=40 | | 2x+12=4(2x+6) | | -2(6f-1)=-5/3(3f+15)+6 | | x/6+4/3=-1/3 | | 4(6x+5)=2x+10 | | 16a-14a-a+a-a=8 | | -(9+8d)=23+6(-2d) | | –11m=–8m−18 | | x+8+17=90 | | 15t+4t-15t-2t=20 | | 6x+5+32-8=90 | | x+12+16=90 | | 11z+4z-11z=16 | | 8(x+0)=35 | | 3(0.75x-4)=2(0.333x-6) | | 11a-8a+a-a-a=12 | | 8-(2u+7)=u+40 |